Detivative table
y=c y=ax y=logax y=lnx y=xa y=sinx y=cosx y=tanx y=cotx y=arcsinx y=arccosx y=arctanx y=arccotx y′=0 y′=axlna y′=xlna1 y′=x1 y′=axa−1 y′=cosx y′=−sinx y′=sec2x y′=−csc2x y′=1−x21 y′=−1−x21 y′=1+x21 y′=−1+x21
积分表
∫kdx=kx∫xadx=a+11xa+1∫x1dx=ln∣x∣∫axdx=lnaax∫exdx=ex∫sinxdx=−cosx∫cosxdx=sinx∫sec2xdx=tanx∫csc2xdx=−cotx∫a2+x2dx=a1arctanax∫x2−a2dx=2a1ln∣∣∣∣∣x+ax−a∣∣∣∣∣∫a2−x2dx=arcsinax∫x2±a2dx=ln∣∣∣∣x±x2±a2∣∣∣∣(a=−1) (0<a=1)(a=0)(a=0)(a>0)
Snippets
∫eaxdx=a1eax
Taylor expansion
f(x)=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+3!f3(a)(x−a)3+⋯+n!fn(a)(x−a)n+⋯
For example,
ex=1+1!x+2!x2+3!x3+⋯
cos(x)=1−2!x2+4!x4−6!x6+⋯
sin(x)=x−3!x3+5!x5−7!x7+⋯
积化和差 和差化积
sin(α)cos(β)cos(α)sin(β)cos(α)cos(β)sin(α)sin(β)=2sin(α+β)+sin(α−β)=2sin(α+β)−sin(α−β)=2cos(α+β)+cos(α−β)=−2cos(α+β)−cos(α−β)
sin(α)+sin(β)sin(α)−sin(β)cos(α)+cos(β)cos(α)−cos(β)=2sin(2α+β)cos(2α−β)=2cos(2α+β)sin(2α−β)=2cos(2α+β)cos(2α−β)=−2sin(2α+β)sin(2α−β)