[Lecture Notes] ShanghaiTech EE150 Signals and Systems

Part 1. Systems

1.2 Transformation of Independent Variable 自变量的变换

1.2.1 自变量变换举例

  • Time reflection 时间反转: x(t)x(t)x(t) \stackrel{}{\longleftrightarrow} x(-t), x[n]x[n]x[n] \stackrel{}{\longleftrightarrow} x[-n]

  • Time scaling 时间尺度变换: x(t)x(ct)x(t) \stackrel{}{\longleftrightarrow} x(ct)

  • Time shift 时移: x(t)x(tt0)x(t) \stackrel{}{\longleftrightarrow} x(t-t_0), x[n]x[nn0]x[n] \stackrel{}{\longleftrightarrow} x[n-n_0]

To perform transformation x(t)x(αt+β)x(t) \rightarrow x(\alpha t + \beta), you have to do time-shifting and then scaling 先时移再时间尺度变换.

E.g. x(t)x(t+β)x(αt+β)x(t) \rightarrow x(t + \beta) \rightarrow x(\alpha t + \beta)

1.2.3 Even and odd signal 偶信号与奇信号

Ev{x(t)}=12(x(t)+x(t))Ev\{x(t)\} = \frac{1}{2} \left( x(t) + x(-t) \right)

Od{x(t)}=12(x(t)x(t))Od\{x(t)\} = \frac{1}{2} \left( x(t) - x(-t) \right)

1.3 Exponential and sinusoidal Signal 指数信号与正弦信号

  • Euler’s formula: ejωt=cos(ω0t)+jsin(ω0t)e^{j\omega t} = \cos(\omega_0 t) + j\cdot \sin(\omega_0 t)

  • Sinusoidal signal: x(t)=Acos(ω0t+ϕ)x(t) = A\cos(\omega_0 t + \phi)

  • Sinusoidal signal can be written in terms of periodic complex exponentials with the same fundamental frequency:

Acos(ω0t+ϕ)=A2ejϕejω0t+A2ejϕejω0tA\cos(\omega_0 t + \phi) = \frac{A}{2} e^{j\phi} e^{j\omega_0 t} + \frac{A}{2} e^{-j\phi} e^{-j\omega_0 t}

1.3.1 连续时间复指数信号与正弦信号

  • x(t)=ejω0tx(t) = e^{j\omega_0 t}
  • T0=2π/ω0T_0 = 2\pi / \lvert\omega_0\rvert

1.3.2 离散时间复指数信号与正弦信号

  • x[n]=ejω0nx[n] = e^{j\omega_0 n}
  • 仅当 ω0/2π\omega_0 / 2\pi 是有理数的时候才是周期信号 (ω0N\omega_0 N 必须是 2π2\pi 整数倍, 下式 mmNN 不能有公约数)

    ω02π=mN\frac{\omega_0}{2\pi} = \frac{m}{N}

  • Fundamental Period N=m(2πω0)N = m\left(\frac{2\pi}{\omega_0}\right)

1.4 Unit Impulse and Unit Step function

1.4.1 DT Unit impulse & Unit step

  • Unit impulse function δ[n]\delta[n] and u[n]u[n]

    δ[n]={0,n01,n=0,    u[n]={0,n<01,n0\delta[n] = \begin{cases} 0, & n\neq 0\\ 1, & n = 0 \end{cases}, \ \ \ \ u[n] = \begin{cases} 0, & n<0\\ 1, & n\geq 0 \end{cases}

  • δ[n]=u[n]u[n1]\delta[n] = u[n] - u[n-1]

1.4.2 CT Unit impulse & Unit step

  • Unit impulse function δ(t)\delta(t) and u(t)u(t)

    u(t)={0,n<01,n>0,   δ(t)=ddtu(t)u(t) = \begin{cases} 0, & n < 0\\ 1, & n > 0 \end{cases}, \ \ \ \delta(t) = \frac{d}{dt}u(t)

1.6 Properties of System 基本系统性质

1. Memoryless: output only depends on input at the same time 当前输出仅依赖当前输入

2. Invertibility: distinct inputs lead to distinct outputs 不同输入导致不同输出,输入和输出一一对应

3. Causality: output doesn’t depend on future 不依赖未来的输入,仅依赖过去和现在的输入

现实中的系统都是因果系统

All memoryless are casual ! 无记忆系统都是因果系统

4. Stability: bounded input gives bounded output 输入有界则输出有界

5. Time-invariance: a time shift in the input only causes a time shift in the output

If x[n]y[n]x[n] \to y[n], then x[nn0]y[nn0]x[n-n_0] \to y[n-n_0]

6. Linearity: a system is linear if (1)additivity and (2)scaling

  • Additivity 可加性: x1(t)+x2(t)y1(t)+y2(t)x_1(t) + x_2(t) \to y_1(t) + y_2(t)

  • Scaling/Homogeneity 比例性/齐次性: ax1(t)ay1(t)a x_1(t)\to a y_1(t)

Part 2: LTI system

2.1 DT LTI System 离散时间线性时不变系统:卷积和

  • Sifting Property 筛选性质

x[n]=k=x[k]δ[nk]x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]

  • 对于任意LTI,只需知道输入信号和单位冲激响应,求卷积和,就能得到输出

y[n]=x[n]h[n]=k=x[k]h[nk]y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty}x[k]h[n-k]

2.2 CT LTI System 连续时间线性时不变系统:卷积积分

  • Sifting Property 筛选性质

x(t)=x(τ)δ(tτ)dτx(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t-\tau)\mathrm{d}\tau

  • 卷积积分

y(t)=x(τ)h(τ)=x(τ)h(tτ)dτy(t) = x(\tau) * h(\tau) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau)\mathrm{d}\tau

2.3 LTI system properties 线性时不变系统的性质

  1. Commutative 交换律: x(t)h(t)=h(t)x(t)x(t) * h(t) = h(t) * x(t) (离散同理)

  2. Bi-linear? 分配律: (ax1(t)+bx2(t))h(t)=a(x1h)+b(x2h)(a x_1(t) + b x_2(t)) * h(t) = a(x_1 * h) + b(x_2 * h), x(ah1+bh2)=a(xh1)+b(xh2)x * (ah_1 + bh_2) = a(x*h_1) + b(x*h_2)

  3. Shift: x(tτ)h(t)=x(t)h(tτ)x(t-\tau) * h(t) = x(t) * h(t-\tau) ( 例如x(t2)h(t+2)=x(t)h(t)x(t-2)*h(t+2)=x(t)*h(t) )

  4. Identity: δ(t)\delta(t) is the identity signal, xδ=x=δxx*\delta = x = \delta * x

  5. Associative: x1(x2x3)=(x1x2)x3x_1 * (x_2 * x_3) = (x_1 * x_2) * x_3

2.3.4 Memoryless LTI systems

  • h[n]=0h[n] = 0 for n0n\neq 0

2.3.5 Invertibility of LTI systems

A system is invertible only if an inverse system exists

h(t)h1(t)=δ(t)h(t) * h_1(t) = \delta(t)

2.3.6 Casuality of LTI systems

  • h[n]=0h[n] = 0 for n<0n<0

2.3.7 Stability of LTI systems

  • If k=h[k]<\sum_{k=-\infty}^{\infty} \lvert h[k] \rvert < \infty (绝对可和) / h(τ)dτ<\int_{-\infty}^{\infty} \lvert h(\tau) \rvert d\tau < \infty, then y[n]y[n] is bounded, and the system is stable.

δ(t)δ(t)=δ(t)\delta(t) * \delta(t) = \delta(t)

Derivatives

y(t)=x(t)h(t)=x(t)h(t)y'(t) = x'(t) * h(t) = x(t) * h'(t)

y(k+r)(t)=x(k)(t)h(r)(t)y^{(k+r)}(t) = x^{(k)}(t) * h^{(r)}(t)

Part 3: Fourier series

Euler’s Formula

ejx=cos(x)+jsin(x)e^{jx} = \cos(x) + j\sin(x)

sin(x)=ejxejx2j\sin(x) = \frac{e^{jx} - e^{-jx}}{2j}

cos(x)=ejx+ejx2\cos(x) = \frac{e^{jx} + e^{-jx}}{2}

3.2 Eigenfunction of LTI system

(线性时不变系统对复指数信号的响应)

如果有一个函数进入系统后,系统的输出是函数的常数倍(可能是复数),那么这个函数就是这个系统的特征函数 eigenfunction

CT

x(t)=esty(t)=esth(τ)esτdτ=estH(s)x(t) = e^{st} \rightarrow \begin{aligned} y(t) &= e^{st} \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}\mathrm{d}\tau &= e^{st} \cdot H(s) \end{aligned}

  • Eigenfunction: este^{st}
  • Eigenvalue: H(s)=h(τ)esτdτH(s) = \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}\mathrm{d}\tau

DT

x[n]=zny[n]=znk=h[k]zk=znH(z)x[n] = z^n \rightarrow y[n] = z^n \sum_{k=-\infty}^{\infty} h[k] z^{-k} = z^{n} \cdot H(z)

  • Eigenfunction: znz^n
  • Eigenvalue: H(z)=k=h[k]zkH(z) = \sum_{k=-\infty}^{\infty} h[k] z^{-k}

Usefulness

如果 x(t)x(t) 能写成一堆eigenfunction的加权之和,那么我们就能很容易知道 x(t)x(t) 的输出。

CT:    x(t)=kakeskty(t)=kakH(sk)esktDT:    x[n]=kakzkny[n]=kakH(zk)zkn\begin{aligned} \textnormal{CT: \ \ \ } &x(t) = \sum_{k} a_k e^{s_k t} &\Rightarrow y(t) = \sum_{k} a_k H(s_k) e^{s_k t}\\ \textnormal{DT: \ \ \ } &x[n] = \sum_{k} a_k z_{k}^{n} &\Rightarrow y[n] = \sum_k a_k H(z_k) z_k^n \end{aligned}

Fourier Analysis

For fourier analysis, we consider:

  • CT: pure imaginary exponential: est=ejωte^{st} = e^{j\omega t}

    Input: ejωte^{j\omega t}, Output: H(jω)ejωtH(j\omega) e^{j\omega t}

  • DT: Unit: zn=ejωnz^{n} = e^{j\omega n}

    Input: ejωne^{j\omega n}, Output: H(ejω)ejωnH(e^{j\omega}) e^{j\omega n}.

3.3 连续时间周期信号的Fourier级数表示

3.3.1 An orthonormal set 成谐波关系的复指数信号的线性组合

  • S={x(t)x(t)=x(t+T0),n}S = \{x(t) | x(t) = x(t+T_0), \forall n\}, T0=2πω0T_0 = \frac{2\pi}{\omega_0}

  • Dot product (Inner product): <x1(t),x2(t)>=1TT2T2x1(t)x2(t)<x_1(t), x_2(t)> = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_1(t) x_2^{*} (t)

  • Harmonically related complex exponential: B={ϕk(t)ϕk(t)=ejkω0t,kZ}B = \{\phi_{k(t)} | \phi_{k(t)} = e^{jk\omega_0 t}, k \in Z \}

  • Observe that they are orthonormal:

    ω02ππω0πω0ejk1ω0tejk2ω0t=δ[k1k2]={0k1k21k1=k2\frac{\omega_0}{2\pi} \int_{-\frac{\pi}{\omega_0}} ^ {\frac{\pi}{\omega_0}} e^{jk_1\omega_0t} e^{-jk_2\omega_0t} = \delta[k_1 - k_2] = \begin{cases} 0 & k_1 \neq k_2\\ 1 & k_1 = k_2 \end{cases}

3.3.2 Fourier Series Expansion 连续时间周期信号傅里叶级数表示的确定

  • Theorem: x(t)x(t) may be expressed as a Fourier series and aka_k can be obtained by

    x(t)=k=akejkω0t, ak=1T0T0x(τ)ejkω0τdτx(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0t}, \ a_k = \frac{1}{T_0} \int_{T_0} x(\tau) e^{-jk\omega_0\tau} \mathrm{d}\tau

    a0a_0 可以直接用面积除以周期计算:

    a0=1T0T0x(τ)dτa_0 = \frac{1}{T_0} \int_{T_0} x(\tau) \mathrm{d}\tau

方波的Fourier Series

a0=2T1T,ak=sin(kω0T1)kπa_0 = \frac{2T_1}{T}, a_k = \frac{sin(k\omega_0 T_1)}{k\pi}

Decomposition of Even and Odd

In general, aka_k is complex, therefore this is not real and imaginary decomposition. However, this is the even and odd decomposition.

不是实部和虚部的分解,而是偶函数与奇函数的分解。

x(t)=k=akejkω0t=k=(akcos(kω0t)+jaksin(kω0t))=a0+k>0((ak+ak)cos(kω0t)+j(akak)sin(kω0t))\begin{aligned} x(t) &= \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}\\ &= \sum_{k=-\infty}^{\infty} (a_k \cos(k\omega_0 t) + j a_k \sin(k\omega_0 t))\\ &= a_0 + \sum_{k>0} ((a_k + a_{-k}) \cos(k\omega_0 t) + j (a_k - a_{-k}) \sin(k \omega_0 t)) \end{aligned}

x(t)x(t) even \rightarrow all sine terms vanish \rightarrow ak=aka_k = a_{-k}

x(t)x(t) odd \rightarrow all cosine terms vanish \rightarrow ak=aka_k = -a_{-k}

3.5 Properties of CT Fourier Series 连续时间傅里叶级数的性质

x(t)FSakx(t) \stackrel{FS}{\longleftrightarrow} a_{k}

  1. Linearity: z(t)=αx(t)+βy(t)FSαak+βbkz(t) = \alpha x(t) + \beta y(t) \stackrel{FS}{\longleftrightarrow} \alpha a_k + \beta b_k

  2. Time-shift: x(tt0)FSejkω0t0akx(t-t_0) \stackrel{FS}{\longleftrightarrow} e^{-jk\omega_0 t_0} a_k

  3. Time-Reverse: x(t)FSakx(-t) \stackrel{FS}{\longleftrightarrow} a_{-k}

  4. Time-scaling: x(αt)=k=akejk(αω0t)x(\alpha t) = \sum_{k=-\infty}^{\infty} a_k e^{jk(\alpha \omega_0 t)}

  5. Multiplication: x(t)y(t)FShk=l=albklx(t)y(t) \stackrel{FS}{\longleftrightarrow} h_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l}

  6. Conjugation & conjugate Symmetry : xFSakx^* \stackrel{FS}{\longleftrightarrow} a^*_{-k}

    • If x(t)x(t) is real, then x(t)=x(t)x(t) = x^*(t), ak=aka_k^* = a_{-k}

    • If x(t)x(t) is real and even, ak=ak=aka_k = a_{-k} = a_k^*, FS coefficients are real and even.

    • If x(t)x(t) is real and odd, ak=ak=aka_k = -a_{-k} = -a_k^*, FS coefficients are purely imaginary and odd.

  7. Derivative and integral: dx(t)dtFSjkω0ak\frac{\mathrm{d}x(t)}{\mathrm{d}t} \stackrel{FS}{\longleftrightarrow} jk\omega_0 a_k, tx(τ)dτFSakjkω0\int_{-\infty}^{t} x(\tau) \mathrm{d}\tau \stackrel{FS}{\longleftrightarrow} \frac{a_k}{jk\omega_0}

  8. Parseval’s Identity: 1TTx(t)2=k=ak2\frac{1}{T} \int_{T} \lvert x(t) \rvert^2 = \sum_{k=-\infty}^{\infty} \lvert a_k \rvert^2

3.6 Fourier series for DT Periodic signal 离散时间周期信号的傅里叶级数表示

与连续时间周期信号的区别:有限项级数;不存在收敛问题

3.6.1 An orthonormal set 成谐波关系的复指数信号的线性组合

  • The set TT of x[n]x[n] satisfying x[n]=x[n+N]x[n] = x[n+N]
  • Dot product (inner-product) defined as

    <x1[n],x2[n]> =1Nn=0N1x1[n]x2[n]<x_1[n], x_2[n]> \ = \frac{1}{N} \sum_{n=0}^{N-1} x_1[n] x_2^*[n]

  • The set CC of NN functions in T

    μk[n]=ejkω0n;0kN1\mu_k[n] = e^{jk\omega_0 n}; 0\leq k \leq N-1

  • Observe that they are orthonormal:

    1Nm=0N1ejkω0mejk2ω0m={0,k1k21,k1=k2\frac{1}{N} \sum_{m=0}^{N-1} e^{jk\omega_0 m}e^{-jk_2\omega_0m} = \begin{cases} 0, k_1\neq k_2\\ 1, k_1=k_2 \end{cases}

3.6.2 Fourier Series for DT Periodic signal

Theorem:

x[n]=k=0N1akejkω0n,ak=1Nm=0N1x[m]ejkω0mx[n] = \sum_{k=0}^{N-1} a_k e^{jk\omega_0 n}, a_k = \frac{1}{N}\sum_{m=0}^{N-1} x[m] e^{-jk\omega_0 m}

3.7 Properties of DT Fourier Series 离散时间傅里叶级数性质

x(t)FSakx(t) \stackrel{FS}{\longleftrightarrow} a_{k}

  1. Linearity: Ax[n]+By[n]FSAak+BbkA x[n] + B y[n] \stackrel{FS}{\longleftrightarrow} A a_k + B b_k
  2. Time-shift: x[nn0]FSakejkω0n0x[n-n_0] \stackrel{FS}{\longleftrightarrow} a_k e^{-jk\omega_0 n_0}
  3. Frequency Shifting: ejMω0nx[n]FSakMe^{jM\omega_0 n}x[n] \stackrel{FS}{\longleftrightarrow} a_{k-M}
  4. Conjugation: x[n]FSakx^*[n] \stackrel{FS}{\longleftrightarrow} a^*_{-k}
  5. Time reversal: x[n]FSakx[-n] \stackrel{FS}{\longleftrightarrow} a_{-k}
  6. Periodic convolution: r=<N>x[r]y[nr]FSNakbk\sum_{r=<N>} x[r]y[n-r] \stackrel{FS}{\longleftrightarrow} Na_kb_k
  7. Multiplication: x[n]y[n]FSl=<N>albklx[n]y[n] \stackrel{FS}{\longleftrightarrow} \sum_{l=<N>} a_l b_{k-l}
  8. First difference: x[n]x[n1]FS(1ejkω0)akx[n] - x[n-1] \stackrel{FS}{\longleftrightarrow} (1-e^{-jk\omega_0})a_k
  9. Parseval’s relation: 1Nn=<N>x[n]2=k=<N>ak2\frac{1}{N}\sum_{n=<N>} \lvert x[n] \rvert^2 = \sum_{k=<N>} \lvert a_k \rvert^2

3.8 Fourier Series and LTI system 傅里叶级数与线性时不变系统

CT

  • System function 系统函数

    (Recall) Eigenfunction: x(t)=esty(t)=H(s)estx(t) = e^{st} \rightarrow y(t) = H(s) e^{st}

    where H(s)=h(τ)esτdτH(s) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} \mathrm{d}\tau is called system function

  • Frequency response 频率响应

    Consider the special case when Re{s}=0Re\{s\} = 0

    s=jωest=ejωts = j \omega \rightarrow e^{st} = e^{j\omega t} \rightarrow

    H(jω)=h(t)ejωtdtH(j\omega) = \int_{-\infty}^{\infty} h(t) e^{-j\omega t} \mathrm{d}t

    is called frequency response

  • Output

    x(t)=k=akejkω0ty(t)=k=akH(jkω0)ejkω0tx(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \\ y(t) = \sum_{k=-\infty}^{\infty} a_k H(jk\omega_0) e^{jk\omega_0 t}

Part 4. CTFT 连续时间傅里叶变换

4.1 非周期信号的傅里叶变换

Fourier transform pair

  • Inverse Fourier Transform

x(t)=12πX(jω)ejωtdωx(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega

  • Fourier transform / Spectrum density function 频谱密度函数

    X(jω)=x(t)ejωtdtX(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt

    频谱密度函数一般是复数,所以一般用模长和相位两部分来表示

Duality property of Fourier Transform 对偶性质

F{F{x(t)}}=2πx(t)F\{F\{ x(t) \}\} = 2\pi x(-t)

δ(t)FT1\delta (t) \stackrel{FT}{\longleftrightarrow} 1

时间域越宽,频域越窄

方波的Fourier Transform

定义sinc(x)=sin(πx)πxsinc(x) = \frac{sin(\pi x)}{\pi x}

X(jω)=2sin(ωT1)ω=2T1sinc(ωT1π)X(j\omega) = \frac{2sin(\omega T_1)}{\omega} = 2T_1sinc(\frac{\omega T_1}{\pi})

4.2 Fourier Transform for Periodic Signal 周期信号的傅里叶变换

x(t)FSak  X(jω)=k=2πakδ(ωkω0)x(t) \stackrel{FS}{\longleftrightarrow} a_k \text{ }\Rightarrow \text{ } X(j\omega) = \sum_{k=-\infty}^{\infty} 2\pi \cdot a_k \cdot \delta(\omega - k\omega_0)

4.3 Properties of Fourier Transform 连续时间傅里叶变换的性质

Notation:

X(jω)=F{x(t)} or x(t)FTX(jω)X(j\omega) = \mathcal{F}\{ x(t) \} \text{ or } x(t) \stackrel{FT}{\longleftrightarrow} X(j\omega)

  1. Linearity: ax(t)+by(t)FTaX(jω)+bY(jω)ax(t) + by(t) \stackrel{FT}{\longleftrightarrow} aX(j\omega) + bY(j\omega)

  2. Time-shift: x(tt0)FTejωt0X(jω)x(t-t_0) \stackrel{FT}{\longleftrightarrow} e^{-j\omega t_0} X(j\omega)

  3. Conjugation: x(t)FTX(jω)x^{*}(t) \stackrel{FT}{\longleftrightarrow} X^{*}(-j\omega)

    Conjugation symmetry: if x(t)x(t) is real, X(jω)=X(jω)X(-j\omega) = X^{*}(j\omega)

    If x(t)x(t) is real and even, X(jω)X(j\omega) is also real and even.

    If x(t)x(t) is real and odd, X(jω)X(j\omega) is purely imaginary and odd.

  4. Differentiation & Integration:

    dx(t)dtFTjωX(jω)\frac{dx(t)}{dt} \stackrel{FT}{\longleftrightarrow} j\omega X(j\omega)

    tx(τ)dτFT1jωX(jω)+πX(0)δ(ω)\int_{-\infty}^{t} x(\tau) d\tau \stackrel{FT}{\longleftrightarrow} \frac{1}{j\omega} X(j\omega) + \pi X(0) \delta(\omega)

  5. Time and Frequency Scaling:

    x(at)FT1aX(jωa)x(at) \stackrel{FT}{\longleftrightarrow} \frac{1}{\lvert a\rvert} X(\frac{j\omega}{a})

    x(t)FTX(jω)x(-t) \stackrel{FT}{\longleftrightarrow} X(-j\omega)

  6. Duality: F{F{x(t)}}=2πx(t)\mathcal{F}\{ \mathcal{F} \{ x(t) \} \} = 2\pi x(-t)

  7. Parseval’s Relation: x(t)2dt=12πX(jω)2dω\int_{-\infty}^{\infty} \lvert x(t) \rvert^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \lvert X(j\omega) \rvert^2 d\omega

4.4 Convolution Property 卷积性质

y(t)=x(t)h(t)FTY(jω)=H(jω)X(jω)y(t) = x(t) * h(t) \stackrel{FT}{\longleftrightarrow} Y(j\omega) = H(j\omega) \cdot X(j\omega)

4.5 Multiplication 相乘性质

Multiplication in time FT\stackrel{FT}{\longleftrightarrow} Convolution in frequency

时间域上的相乘,等于频域上的卷积

r(t)=s(t)p(t)FTR(jω)=12π[S(jω)P(jω)]r(t) = s(t) p(t) \stackrel{FT}{\longleftrightarrow} R(j\omega) = \frac{1}{2\pi} \left[ S(j\omega) * P(j \omega) \right]

4.6 CTFT pairs

Part 5. DTFT 离散时间傅里叶变换

5.1 DT fourier transform

  • DTFT

    X(ejω)=n=x[n]ejωnX(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}

    X(ejω)X(e^{j\omega}) is periodic with period 2π2\pi.

  • Inverse DTFT

    x[n]=12πππX(ejω)ejωndωx[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega

Convergence Issues of DTFT 收敛性条件

  1. x[n]x[n] is absolutely summable 绝对可和: x[n]<\sum_{-\infty}^{\infty} \lvert x[n] \rvert < \infty
  2. OR x[n]x[n] has finite energy 有限能量: x[n]2<\sum_{-\infty}^{\infty} \lvert x[n] \rvert^2 < \infty

5.2 DTFT for periodic signals

x[n]FSak  X(ejω)=2πakδ(ω2πkN)x[n] \stackrel{FS}{\longleftrightarrow} a_k \text{ }\Rightarrow \text{ } X(e^{j\omega}) = \sum_{-\infty}^{\infty} 2\pi a_k \delta(\omega - \frac{2\pi k}{N})

5.3 Properties of DTFT

Notation:

x[n]FTX(ejω)x[n] \stackrel{FT}{\longleftrightarrow} X(e^{j\omega})

  1. Periodicity: DTFT is always periodic in ω\omega with period 2π2\pi, X(ej(ω+2π))=X(ejω)X(e^{j(\omega+2\pi)}) = X(e^{j\omega})

  2. Linearity: ax1[n]+bx2[n]FTaX1(ejω)+bX2(ejω)ax_1[n] + bx_2[n] \stackrel{FT}{\longleftrightarrow} aX_1(e^{j\omega}) + bX_2(e^{j\omega})

  3. Time shifting: x[nn0]FTejωn0X(ejω)x[n-n_0] \stackrel{FT}{\longleftrightarrow} e^{-j\omega n_0} X(e^{j\omega})

  4. Frequency shifting: ejω0nx[n]FTX(ej(ωω0))e^{j\omega_0 n} x[n] \stackrel{FT}{\longleftrightarrow} X(e^{j(\omega - \omega_0)})

  5. Conjugation and conjugate symmetry: X[n]FTX(ejω)X^*[n] \stackrel{FT}{\longleftrightarrow} X^* (e^{-j\omega})

    If x[n]x[n] is real, then X(ejω)=X(ejω)X(e^{j\omega}) = X^*(e^{-j\omega})

  6. Differencing: x[n]x[n1]FT(1ejω)X(ejω)x[n] - x[n-1] \stackrel{FT}{\longleftrightarrow} (1 - e^{-j\omega}) X(e^{j\omega})

  7. Accumulation: y[n]=m=nx[m]y[n] = \sum_{m=-\infty}^{n} x[m],

    m=nx[m]FT11ejωX(ejω)+πX(ej0)k=δ(ω2πk)\sum_{m=-\infty}^{n} x[m] \stackrel{FT}{\longleftrightarrow} \frac{1}{1-e^{-j\omega}} X(e^{j\omega}) + \pi X(e^{j0}) \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)

  8. Time reversal: x[n]FTX(ejω)x[-n] \stackrel{FT}{\longleftrightarrow} X(e^{-j\omega})

  9. Differentiation in frequency: nx[n]FTjdX(ejω)dωnx[n] \stackrel{FT}{\longleftrightarrow} j \frac{dX(e^{j\omega})}{d\omega}

  10. Parseval: n=x[n]2=12π2πX(ejω)2dω\sum_{n=-\infty}^{\infty} \lvert x[n] \rvert^2 = \frac{1}{2\pi} \int_{2\pi} \lvert X(e^{j\omega}) \rvert^2 d\omega

  11. Time expansion: x(k)[n]FTX(ejkω)x_{(k)} [n] \stackrel{FT}{\longleftrightarrow} X(e^{jk \omega})

5.4 Convolution Property

y[n]=x[n]h[n]FTY(ejω)=X(ejω)H(ejω)y[n] = x[n] * h[n] \stackrel{FT}{\longleftrightarrow} Y(e^{j\omega}) = X(e^{j\omega}) H(e^{j\omega})

5.5 Multiplication Property

y[n]=x[n]h[n]FTY(ejv)=12πππX(ejω)H(ej(vω))dωy[n] = x[n] \cdot h[n] \stackrel{FT}{\longleftrightarrow} Y(e^{jv}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) H(e^{j(v-\omega)}) d\omega

5.7 Duality 对偶性

5.6 DTFT pairs

Part 6 Time & Freq characterization of signals and systems

TODO…

Part 7. Sampling

7.1 用信号样本表示连续时间信号:采样定理

7.1.1 Impulse-Train Sampling 冲激串采样

  • Sampling function: p(t)=n=δ(tnT)p(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)
  • Sampling period: TT
  • Sampling frequency: 2πT\frac{2\pi}{T}

xp(t)=x(t)p(t)=n=x(nT)δ(tnT)x_p(t) = x(t) p(t) = \sum_{n=-\infty}^{\infty} x(nT) \delta(t - nT)

Xp(jω)=12π[X(jω)P(jω)]=1Tk=X(j(ωkωs))X_p(j\omega) = \frac{1}{2\pi} \left[ X(j\omega) * P(j\omega) \right] = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))

Sampling Theorem:

  • Let x(t)x(t) be a band-limited signal with X(jω)=0X(j\omega) = 0 for ω>ωM\lvert \omega \rvert > \omega_M. Then x(t)x(t) is uniquely determined by its samples x(nT)x(nT) if ωs>2ωM\omega_s > 2\omega_M, where ωs=2πT\omega_s = \frac{2\pi}{T}

  • Nyquist rate 奈奎斯特率: 2ωM2\omega_M

7.1.2 Zero-order Hold Sampling 零阶保持采样

7.2 Signal reconstruction using Interpolation 利用内插重建信号

To be continued…

7.3 Effect of Undersampling: Aliasing 混叠

7.4 Discrete-Time Processing of Continous-Time Signals

Part 8. The Laplace Transform (LT)

8.1 Laplace transform

  • Eigenfunction este^{st}: H(s)=h(τ)esτdτH(s) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau

  • Laplace Transform (LT) of x(t)x(t): complex s=σ+jωs=\sigma + j\omega

    x(t)LX(s)=x(t)estdtx(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt

  • X(s)=FT{x(t)eσt}X(s) = FT\{x(t)e^{-\sigma t} \}

  • X(s)s=jω=FT{x(t)}X(s) \vert_{s=j\omega} = FT\{x(t)\}

8.2 Region of Convergence (ROC)

  • Region of (conditional) convergence 条件收敛: region of ss for which
    x(t)estdt\int_{-\infty}^{\infty} x(t) e^{-st}dt converges.

  • Region of (absolute) convergence 绝对收敛: region of ss for which
    x(t)estdt\int_{-\infty}^{\infty} \lvert x(t) e^{-st}\rvert dt converges.

  • 通常使用绝对收敛域

Properties of ROC

  1. ROC consists of strips parallel to the jωj\omega-axis.

  2. ROC of rational X(s)X(s) does not contain any pole.

  3. If x(t)x(t) is of finite duration and absolutely integrable, then ROC is the entire s-plane.

  4. If x(t)x(t) is right-sided, and if a line Re(s)=σ0Re(s) = \sigma_0 is in ROC, then ROC contains all ss such that Re(s)σ0Re(s) \geq \sigma_0.

  5. If x(t)x(t) is left-sided, and if a line Re(s)=σ0Re(s) = \sigma_0 is in ROC, then ROC contains all ss such that Re(s)σ0Re(s) \leq \sigma_0.

  6. If x(t)x(t) is two-sided, ROC is a strip (can be empty).

  7. Rational X(s)X(s), ROC is bounded by poles or extends to infinity.

  8. (1). If x(t)x(t) right-sided and X(s)X(s) rational, then ROC is the region to the right of the rightmost pole

    (2). If x(t)x(t) left-sided and X(s)X(s) rational, then ROC is the region to the left of the leftmost pole

    (3). If x(t)x(t) two-sided and X(s)X(s) rational, then ROC is a strip between two consecutive poles.

8.3 Inverse LT

x(t)=12πjσjσ+jX(s)estdsx(t) = \frac{1}{2\pi j} \int_{\sigma - j \infty}^{\sigma + j \infty} X(s) e^{st} ds

8.5 Properties of LT

PropertySignalLTROC
Linearityax1(t)+bx2(t)a x_1(t) + b x_2(t)aX1(s)+bX2(s)a X_1(s) + bX_2(s)at least R1R2R_1 \cap R_2
Time-shiftx(tt0)x(t-t_0)est0X(s)e^{-s t_0} X(s)RR
Shift in sses0tx(t)e^{s_0 t}x(t)$X(s-s_0) $R+Re(s0)R + Re(s_0)
Time scalingx(at)x(at)1aX(sa)\frac{1}{\lvert a \rvert} X(\frac{s}{a})aRaR
Time reversalx(t)x(-t)X(s)X(-s)R-R
Conjugationx(t)x^*(t)X(s)X^*(s^*)RR
Convolutionx1(t)x2(t)x_1(t) * x_2(t)X1(s)X2(s)X_1(s) X_2(s)at least R1R2R_1 \cap R_2
Differentiation in ttdx(t)dt\frac{dx(t)}{dt}sX(s)sX(s)at least RR
Differentiation in sstx(t)-tx(t)dX(s)ds\frac{dX(s)}{ds}RR
Integration in tttx(τ)dτ\int_{-\infty}^{t} x(\tau) d\tau1sX(s)\frac{1}{s}X(s)at least R{Re(s)>0}R \cap \{ Re(s) > 0 \}

If x(t)<0x(t) < 0 for t<0t<0 and x(t)x(t)t=0t=0不包括任何冲激或高阶奇异函数,

Initial-value theorem: x(0+)=limssX(s)x(0^+) = \lim_{s\to\infty} sX(s)

Final-value theorem: limtx(t)=lims0X(s)\lim_{t\to\infty} x(t) = \lim_{s\to 0} X(s)

Unilateral LT

ROC for a unilateral LT must be a right-half plane, hence ROC is usually omitted.

ULT{x(t)}=LT{x(t)u(t)}ULT\{x(t)\} = LT\{ x(t) u(t) \}

Properties of Unilateral LT

ddtx(t)LsX(s)x(0)\frac{d}{dt} x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} sX(s) - x(0^{-})

dndtnx(t)LsnX(s)r=0n1snr1x(r)(0)\frac{d^n}{dt^n} x(t)\stackrel{\mathcal{L}}{\longleftrightarrow} s^n X(s) - \sum_{r=0}^{n-1} s^{n-r-1} x^{(r)}(0^{-})

8.6 Some LT pairs

8.7 LTI system and system function

8.7.1 Casuality

For an LTI system, y(t)=x(t)h(t)y(t) = x(t) * h(t), Y(s)=X(s)H(s)Y(s) = X(s) \cdot H(s)

LTI system with H(s)H(s): Casual \Rightarrow ROC is a right-half plane.

LTI system with rational H(s): Casual \Leftrightarrow ROC to the right of the rightmost pole

8.7.2 Stability

LTI system with H(s)H(s): Stable \Leftrightarrow ROC includes jωj\omega-axis

LTI system with rational H(s): Casual and stable if and only if all poles lie in the left-half of the s-plane.

8.7.3 LTI system characterized by LCC differential Eqn

To be continued.

Part 9. Z transform

Z

X(z)=n=x[n]znX(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}

  • X(z)=FT{x[n]rn}X(z) = FT\{x[n] r^{-n}\}

  • X(z)z=ejω=FT{x[n]}X(z) \lvert_{z=e^{j\omega}} = FT\{x[n]\}

  • ROC: The set of zz such that n=x[n]zn\sum_{n=-\infty}^{\infty} \lvert x[n] z^{n} \rvert converges

Properties of ROC

  1. ROC is a ring in the z-plane centered about origin

  2. ROC does not contain any pole.

  3. If x[n]x[n] has finite duration, then ROC is the entire z-plane, except possibly z=0z=0 and/or z=z=\infty

  4. (1) If x[n]x[n] is right-sided, and if z=r0\lvert z\rvert = r_0 is in ROC, then all finite values zr0\lvert z\rvert \geq r_0 will also be in the ROC.

    (2) If x[n]x[n] is right-sided, then ROC takes the form c<z<c < \lvert z \rvert < \infty.

  5. (1)If x[n]x[n] is left-sided, and if z=r0\lvert z\rvert = r_0 is in ROC, then all finite values zr0\lvert z\rvert \leq r_0 will also be in the ROC.

    (2) If x[n]x[n] is left-sided, then ROC takes the form 0<z<c0 < \lvert z \rvert < c.

  6. (1) If x[n]x[n] is two-sided, and if z=r0\lvert z\rvert = r_0 is in ROC, then ROC is a ring that includes z=r0\lvert z\rvert = r_0.

    (2) If x[n]x[n] is two-sided, then ROC takes the form c1<z<c2c_1 < \lvert z \rvert < c_2.

  7. If X(z)X(z) is rational, then ROC is bounded by poles or extends to infinity.

  8. (1) If x[n]x[n] is right-sided and X(z)X(z) is rational, then ROC is outside the outermost finite pole (may not include z=z=\infty).

    Especially, if x[n]x[n] is casual, then ROC contains z=z=\infty

    (2) If x[n]x[n] is left-sided and X(z)X(z) is rational, then ROC is inside the innermost nonzero pole (may not include z=0z=0).

    Especially, if x[n]x[n] is anticasual, then ROC contains z=0z=0

    (3) If x[n]x[n] is two-sided and X(z)X(z) is rational, then ROC is a ring between two consecutive poles.

Properties of ZT

ZT pairs


[Lecture Notes] ShanghaiTech EE150 Signals and Systems
https://www.billhu.us/2022/25_signal/
Author
Bill Hu
Posted on
March 26, 2022
Licensed under