Part 1. Systems
 1.2.1 自变量变换举例
- Time reflection 时间反转: x(t)⟷x(−t), x[n]⟷x[−n] 
- Time scaling 时间尺度变换: x(t)⟷x(ct) 
- Time shift 时移: x(t)⟷x(t−t0), x[n]⟷x[n−n0] 
To perform transformation x(t)→x(αt+β), you have to do time-shifting and then scaling 先时移再时间尺度变换.
E.g. x(t)→x(t+β)→x(αt+β)
 1.2.3 Even and odd signal 偶信号与奇信号
Ev{x(t)}=21(x(t)+x(−t))
Od{x(t)}=21(x(t)−x(−t))
 1.3 Exponential and sinusoidal Signal 指数信号与正弦信号
- Euler’s formula: ejωt=cos(ω0t)+j⋅sin(ω0t) 
- Sinusoidal signal: x(t)=Acos(ω0t+ϕ) 
- Sinusoidal signal can be written in terms of periodic complex exponentials with the same fundamental frequency: 
Acos(ω0t+ϕ)=2Aejϕejω0t+2Ae−jϕe−jω0t
 1.3.1 连续时间复指数信号与正弦信号
- x(t)=ejω0t
- T0=2π/∣ω0∣
 1.3.2 离散时间复指数信号与正弦信号
 1.4 Unit Impulse and Unit Step function
 1.4.1 DT Unit impulse & Unit step
- Unit impulse function δ[n] and u[n] - δ[n]={0,1,n=0n=0,    u[n]={0,1,n<0n≥0 
- δ[n]=u[n]−u[n−1] 
 1.4.2 CT Unit impulse & Unit step
- Unit impulse function δ(t) and u(t)u(t)={0,1,n<0n>0,   δ(t)=dtdu(t) 
 1.6 Properties of System 基本系统性质
1. Memoryless: output only depends on input at the same time 当前输出仅依赖当前输入
2. Invertibility: distinct inputs lead to distinct outputs 不同输入导致不同输出,输入和输出一一对应
3. Causality: output doesn’t depend on future 不依赖未来的输入,仅依赖过去和现在的输入
现实中的系统都是因果系统
All memoryless are casual ! 无记忆系统都是因果系统
4. Stability: bounded input gives bounded output 输入有界则输出有界
5. Time-invariance: a time shift in the input only causes a time shift in the output
If x[n]→y[n], then x[n−n0]→y[n−n0]
6. Linearity: a system is linear if (1)additivity and (2)scaling
 Part 2: LTI system
 2.1 DT LTI System 离散时间线性时不变系统:卷积和
x[n]=k=−∞∑∞x[k]δ[n−k]
- 对于任意LTI,只需知道输入信号和单位冲激响应,求卷积和,就能得到输出
y[n]=x[n]∗h[n]=k=−∞∑∞x[k]h[n−k]
 2.2 CT LTI System 连续时间线性时不变系统:卷积积分
x(t)=∫−∞∞x(τ)δ(t−τ)dτ
y(t)=x(τ)∗h(τ)=∫−∞∞x(τ)h(t−τ)dτ
 2.3 LTI system properties 线性时不变系统的性质
- Commutative 交换律: x(t)∗h(t)=h(t)∗x(t) (离散同理) 
- Bi-linear? 分配律: (ax1(t)+bx2(t))∗h(t)=a(x1∗h)+b(x2∗h), x∗(ah1+bh2)=a(x∗h1)+b(x∗h2) 
- Shift: x(t−τ)∗h(t)=x(t)∗h(t−τ) ( 例如x(t−2)∗h(t+2)=x(t)∗h(t) ) 
- Identity: δ(t) is the identity signal, x∗δ=x=δ∗x 
- Associative: x1∗(x2∗x3)=(x1∗x2)∗x3 
 2.3.4 Memoryless LTI systems
- h[n]=0 for n=0
 2.3.5 Invertibility of LTI systems
A system is invertible only if an inverse system exists
h(t)∗h1(t)=δ(t)
 2.3.6 Casuality of LTI systems
- h[n]=0 for n<0
 2.3.7 Stability of LTI systems
- If ∑k=−∞∞∣h[k]∣<∞ (绝对可和) / ∫−∞∞∣h(τ)∣dτ<∞, then y[n] is bounded, and the system is stable.
δ(t)∗δ(t)=δ(t)
Derivatives
y′(t)=x′(t)∗h(t)=x(t)∗h′(t)
y(k+r)(t)=x(k)(t)∗h(r)(t)
 Part 3: Fourier series
Euler’s Formula
ejx=cos(x)+jsin(x)
sin(x)=2jejx−e−jx
cos(x)=2ejx+e−jx
 3.2 Eigenfunction of LTI system
(线性时不变系统对复指数信号的响应)
如果有一个函数进入系统后,系统的输出是函数的常数倍(可能是复数),那么这个函数就是这个系统的特征函数 eigenfunction
 CT
x(t)=est→y(t)=est∫−∞∞h(τ)e−sτdτ=est⋅H(s)
- Eigenfunction: est
- Eigenvalue: H(s)=∫−∞∞h(τ)e−sτdτ
 DT
x[n]=zn→y[n]=znk=−∞∑∞h[k]z−k=zn⋅H(z)
- Eigenfunction: zn
- Eigenvalue: H(z)=∑k=−∞∞h[k]z−k
 Usefulness
如果 x(t) 能写成一堆eigenfunction的加权之和,那么我们就能很容易知道 x(t) 的输出。
CT:    DT:    x(t)=k∑akesktx[n]=k∑akzkn⇒y(t)=k∑akH(sk)eskt⇒y[n]=k∑akH(zk)zkn
 Fourier Analysis
For fourier analysis, we consider:
- CT: pure imaginary exponential: est=ejωt - Input: ejωt, Output: H(jω)ejωt 
- DT: Unit: zn=ejωn - Input: ejωn, Output: H(ejω)ejωn. 
 3.3 连续时间周期信号的Fourier级数表示
 3.3.1 An orthonormal set 成谐波关系的复指数信号的线性组合
- S={x(t)∣x(t)=x(t+T0),∀n}, T0=ω02π 
- Dot product (Inner product): <x1(t),x2(t)>=T1∫−2T2Tx1(t)x2∗(t) 
- Harmonically related complex exponential: B={ϕk(t)∣ϕk(t)=ejkω0t,k∈Z} 
- Observe that they are orthonormal: - 2πω0∫−ω0πω0πejk1ω0te−jk2ω0t=δ[k1−k2]={01k1=k2k1=k2 
 3.3.2 Fourier Series Expansion 连续时间周期信号傅里叶级数表示的确定
- Theorem: x(t) may be expressed as a Fourier series and ak can be obtained by - x(t)=k=−∞∑∞akejkω0t, ak=T01∫T0x(τ)e−jkω0τdτ - a0 可以直接用面积除以周期计算: - a0=T01∫T0x(τ)dτ 
方波的Fourier Series

a0=T2T1,ak=kπsin(kω0T1)
 Decomposition of Even and Odd
In general, ak is complex, therefore this is not real and imaginary decomposition. However, this is the even and odd decomposition.
不是实部和虚部的分解,而是偶函数与奇函数的分解。
x(t)=k=−∞∑∞akejkω0t=k=−∞∑∞(akcos(kω0t)+jaksin(kω0t))=a0+k>0∑((ak+a−k)cos(kω0t)+j(ak−a−k)sin(kω0t))
x(t) even → all sine terms vanish → ak=a−k
x(t) odd → all cosine terms vanish → ak=−a−k
 3.5 Properties of CT Fourier Series 连续时间傅里叶级数的性质
x(t)⟷FSak
- Linearity: z(t)=αx(t)+βy(t)⟷FSαak+βbk 
- Time-shift: x(t−t0)⟷FSe−jkω0t0ak 
- Time-Reverse: x(−t)⟷FSa−k 
- Time-scaling: x(αt)=∑k=−∞∞akejk(αω0t) 
- Multiplication: x(t)y(t)⟷FShk=∑l=−∞∞albk−l 
- Conjugation & conjugate Symmetry : x∗⟷FSa−k∗ - If x(t) is real, then x(t)=x∗(t), ak∗=a−k 
- If x(t) is real and even, ak=a−k=ak∗, FS coefficients are real and even. 
- If x(t) is real and odd, ak=−a−k=−ak∗, FS coefficients are purely imaginary and odd. 
 
- Derivative and integral: dtdx(t)⟷FSjkω0ak, ∫−∞tx(τ)dτ⟷FSjkω0ak 
- Parseval’s Identity: T1∫T∣x(t)∣2=∑k=−∞∞∣ak∣2 
 3.6 Fourier series for DT Periodic signal 离散时间周期信号的傅里叶级数表示
与连续时间周期信号的区别:有限项级数;不存在收敛问题
 3.6.1 An orthonormal set 成谐波关系的复指数信号的线性组合
- The set T of x[n] satisfying x[n]=x[n+N]
- Dot product (inner-product) defined as<x1[n],x2[n]> =N1n=0∑N−1x1[n]x2∗[n] 
- The set C of N functions in Tμk[n]=ejkω0n;0≤k≤N−1 
- Observe that they are orthonormal:N1m=0∑N−1ejkω0me−jk2ω0m={0,k1=k21,k1=k2 
 3.6.2 Fourier Series for DT Periodic signal
Theorem:
x[n]=k=0∑N−1akejkω0n,ak=N1m=0∑N−1x[m]e−jkω0m
 3.7 Properties of DT Fourier Series 离散时间傅里叶级数性质
x(t)⟷FSak
- Linearity: Ax[n]+By[n]⟷FSAak+Bbk
- Time-shift: x[n−n0]⟷FSake−jkω0n0
- Frequency Shifting: ejMω0nx[n]⟷FSak−M
- Conjugation: x∗[n]⟷FSa−k∗
- Time reversal: x[−n]⟷FSa−k
- Periodic convolution: ∑r=<N>x[r]y[n−r]⟷FSNakbk
- Multiplication: x[n]y[n]⟷FS∑l=<N>albk−l
- First difference: x[n]−x[n−1]⟷FS(1−e−jkω0)ak
- Parseval’s relation: N1∑n=<N>∣x[n]∣2=∑k=<N>∣ak∣2
 3.8 Fourier Series and LTI system 傅里叶级数与线性时不变系统
 CT
- System function 系统函数 - (Recall) Eigenfunction: x(t)=est→y(t)=H(s)est - where H(s)=∫−∞∞h(τ)e−sτdτ is called system function 
- Frequency response 频率响应 - Consider the special case when Re{s}=0 - s=jω→est=ejωt→ - H(jω)=∫−∞∞h(t)e−jωtdt - is called frequency response 
- Output - x(t)=k=−∞∑∞akejkω0ty(t)=k=−∞∑∞akH(jkω0)ejkω0t 
 Part 4. CTFT 连续时间傅里叶变换
 4.1 非周期信号的傅里叶变换
Fourier transform pair
- Inverse Fourier Transform
x(t)=2π1∫−∞∞X(jω)ejωtdω
- Fourier transform / Spectrum density function 频谱密度函数 - X(jω)=∫−∞∞x(t)e−jωtdt - 频谱密度函数一般是复数,所以一般用模长和相位两部分来表示 
Duality property of Fourier Transform 对偶性质
F{F{x(t)}}=2πx(−t)
δ(t)⟷FT1
时间域越宽,频域越窄
方波的Fourier Transform

定义sinc(x)=πxsin(πx)
X(jω)=ω2sin(ωT1)=2T1sinc(πωT1)
x(t)⟷FSak ⇒ X(jω)=k=−∞∑∞2π⋅ak⋅δ(ω−kω0)
Notation:
X(jω)=F{x(t)} or x(t)⟷FTX(jω)
- Linearity: ax(t)+by(t)⟷FTaX(jω)+bY(jω) 
- Time-shift: x(t−t0)⟷FTe−jωt0X(jω) 
- Conjugation: x∗(t)⟷FTX∗(−jω) - Conjugation symmetry: if x(t) is real, X(−jω)=X∗(jω) - If x(t) is real and even, X(jω) is also real and even. - If x(t) is real and odd, X(jω) is purely imaginary and odd. 
- Differentiation & Integration: - dtdx(t)⟷FTjωX(jω) - ∫−∞tx(τ)dτ⟷FTjω1X(jω)+πX(0)δ(ω) 
- Time and Frequency Scaling: - x(at)⟷FT∣a∣1X(ajω) - x(−t)⟷FTX(−jω) 
- Duality: F{F{x(t)}}=2πx(−t) 
- Parseval’s Relation: ∫−∞∞∣x(t)∣2dt=2π1∫−∞∞∣X(jω)∣2dω 
 4.4 Convolution Property 卷积性质
y(t)=x(t)∗h(t)⟷FTY(jω)=H(jω)⋅X(jω)
 4.5 Multiplication 相乘性质
Multiplication in time ⟷FT Convolution in frequency
时间域上的相乘,等于频域上的卷积
r(t)=s(t)p(t)⟷FTR(jω)=2π1[S(jω)∗P(jω)]
 4.6 CTFT pairs

 Part 5. DTFT 离散时间傅里叶变换
- DTFT - X(ejω)=n=−∞∑∞x[n]e−jωn - X(ejω) is periodic with period 2π. 
- Inverse DTFT - x[n]=2π1∫−ππX(ejω)ejωndω 
Convergence Issues of DTFT 收敛性条件
- x[n] is absolutely summable 绝对可和: ∑−∞∞∣x[n]∣<∞
- OR x[n] has finite energy 有限能量: ∑−∞∞∣x[n]∣2<∞
 5.2 DTFT for periodic signals
x[n]⟷FSak ⇒ X(ejω)=−∞∑∞2πakδ(ω−N2πk)
 5.3 Properties of DTFT
Notation:
x[n]⟷FTX(ejω)
- Periodicity: DTFT is always periodic in ω with period 2π, X(ej(ω+2π))=X(ejω) 
- Linearity: ax1[n]+bx2[n]⟷FTaX1(ejω)+bX2(ejω) 
- Time shifting: x[n−n0]⟷FTe−jωn0X(ejω) 
- Frequency shifting: ejω0nx[n]⟷FTX(ej(ω−ω0)) 
- Conjugation and conjugate symmetry: X∗[n]⟷FTX∗(e−jω) - If x[n] is real, then X(ejω)=X∗(e−jω) 
- Differencing: x[n]−x[n−1]⟷FT(1−e−jω)X(ejω) 
- Accumulation: y[n]=∑m=−∞nx[m], - m=−∞∑nx[m]⟷FT1−e−jω1X(ejω)+πX(ej0)k=−∞∑∞δ(ω−2πk) 
- Time reversal: x[−n]⟷FTX(e−jω) 
- Differentiation in frequency: nx[n]⟷FTjdωdX(ejω) 
- Parseval: ∑n=−∞∞∣x[n]∣2=2π1∫2π∣X(ejω)∣2dω 
- Time expansion: x(k)[n]⟷FTX(ejkω) 
 5.4 Convolution Property
y[n]=x[n]∗h[n]⟷FTY(ejω)=X(ejω)H(ejω)
 5.5 Multiplication Property
y[n]=x[n]⋅h[n]⟷FTY(ejv)=2π1∫−ππX(ejω)H(ej(v−ω))dω
 5.7 Duality 对偶性

 5.6 DTFT pairs

 Part 6 Time & Freq characterization of signals and systems
TODO…
 Part 7. Sampling
 7.1 用信号样本表示连续时间信号:采样定理
 7.1.1 Impulse-Train Sampling 冲激串采样
- Sampling function: p(t)=∑n=−∞∞δ(t−nT)
- Sampling period: T
- Sampling frequency: T2π
xp(t)=x(t)p(t)=n=−∞∑∞x(nT)δ(t−nT)
Xp(jω)=2π1[X(jω)∗P(jω)]=T1k=−∞∑∞X(j(ω−kωs))

Sampling Theorem:
- Let x(t) be a band-limited signal with X(jω)=0 for ∣ω∣>ωM. Then x(t) is uniquely determined by its samples x(nT) if ωs>2ωM, where ωs=T2π 
- Nyquist rate 奈奎斯特率: 2ωM 
 7.1.2 Zero-order Hold Sampling 零阶保持采样

 7.2 Signal reconstruction using Interpolation 利用内插重建信号
To be continued…
 7.3 Effect of Undersampling: Aliasing 混叠
 7.4 Discrete-Time Processing of Continous-Time Signals
 
 
- Eigenfunction est: H(s)=∫−∞∞h(τ)e−sτdτ 
- Laplace Transform (LT) of x(t): complex s=σ+jω - x(t)⟷LX(s)=∫−∞∞x(t)e−stdt 
- X(s)=FT{x(t)e−σt} 
- X(s)∣s=jω=FT{x(t)} 
 8.2 Region of Convergence (ROC)
- Region of (conditional) convergence 条件收敛: region of s for which
 ∫−∞∞x(t)e−stdt converges.
 
- Region of (absolute) convergence 绝对收敛: region of s for which
 ∫−∞∞∣x(t)e−st∣dt converges.
 
- 通常使用绝对收敛域 
 Properties of ROC
- ROC consists of strips parallel to the jω-axis. 
- ROC of rational X(s) does not contain any pole. 
- If x(t) is of finite duration and absolutely integrable, then ROC is the entire s-plane. 
- If x(t) is right-sided, and if a line Re(s)=σ0 is in ROC, then ROC contains all s such that Re(s)≥σ0. 
- If x(t) is left-sided, and if a line Re(s)=σ0 is in ROC, then ROC contains all s such that Re(s)≤σ0. 
- If x(t) is two-sided, ROC is a strip (can be empty). 
- Rational X(s), ROC is bounded by poles or extends to infinity. 
- (1). If x(t) right-sided and X(s) rational, then ROC is the region to the right of the rightmost pole - (2). If x(t) left-sided and X(s) rational, then ROC is the region to the left of the leftmost pole - (3). If x(t) two-sided and X(s) rational, then ROC is a strip between two consecutive poles. 
 8.3 Inverse LT
x(t)=2πj1∫σ−j∞σ+j∞X(s)estds
 8.5 Properties of LT
| Property | Signal | LT | ROC | 
|---|
| Linearity | ax1(t)+bx2(t) | aX1(s)+bX2(s) | at least R1∩R2 | 
| Time-shift | x(t−t0) | e−st0X(s) | R | 
| Shift in s | es0tx(t) | $X(s-s_0) $ | R+Re(s0) | 
| Time scaling | x(at) | ∣a∣1X(as) | aR | 
| Time reversal | x(−t) | X(−s) | −R | 
| Conjugation | x∗(t) | X∗(s∗) | R | 
| Convolution | x1(t)∗x2(t) | X1(s)X2(s) | at least R1∩R2 | 
| Differentiation in t | dtdx(t) | sX(s) | at least R | 
| Differentiation in s | −tx(t) | dsdX(s) | R | 
| Integration in t | ∫−∞tx(τ)dτ | s1X(s) | at least R∩{Re(s)>0} | 
If x(t)<0 for t<0 and x(t)在t=0不包括任何冲激或高阶奇异函数,
Initial-value theorem: x(0+)=lims→∞sX(s)
Final-value theorem: limt→∞x(t)=lims→0X(s)
 Unilateral LT
ROC for a unilateral LT must be a right-half plane, hence ROC is usually omitted.
ULT{x(t)}=LT{x(t)u(t)}
 Properties of Unilateral LT
dtdx(t)⟷LsX(s)−x(0−)
dtndnx(t)⟷LsnX(s)−r=0∑n−1sn−r−1x(r)(0−)
 8.6 Some LT pairs

 8.7 LTI system and system function
 8.7.1 Casuality
For an LTI system, y(t)=x(t)∗h(t), Y(s)=X(s)⋅H(s)
LTI system with H(s): Casual ⇒ ROC is a right-half plane.
LTI system with rational H(s): Casual ⇔ ROC to the right of the rightmost pole
 8.7.2 Stability
LTI system with H(s): Stable ⇔ ROC includes jω-axis
LTI system with rational H(s): Casual and stable if and only if all poles lie in the left-half of the s-plane.
 8.7.3 LTI system characterized by LCC differential Eqn
To be continued.
 Z
X(z)=n=−∞∑∞x[n]z−n
- X(z)=FT{x[n]r−n} 
- X(z)∣z=ejω=FT{x[n]} 
- ROC: The set of z such that ∑n=−∞∞∣x[n]zn∣ converges 
 Properties of ROC
- ROC is a ring in the z-plane centered about origin 
- ROC does not contain any pole. 
- If x[n] has finite duration, then ROC is the entire z-plane, except possibly z=0 and/or z=∞ 
- (1) If x[n] is right-sided, and if ∣z∣=r0 is in ROC, then all finite values ∣z∣≥r0 will also be in the ROC. - (2) If x[n] is right-sided, then ROC takes the form c<∣z∣<∞. 
- (1)If x[n] is left-sided, and if ∣z∣=r0 is in ROC, then all finite values ∣z∣≤r0 will also be in the ROC. - (2) If x[n] is left-sided, then ROC takes the form 0<∣z∣<c. 
- (1) If x[n] is two-sided, and if ∣z∣=r0 is in ROC, then ROC is a ring that includes ∣z∣=r0. - (2) If x[n] is two-sided, then ROC takes the form c1<∣z∣<c2. 
- If X(z) is rational, then ROC is bounded by poles or extends to infinity. 
- (1) If x[n] is right-sided and X(z) is rational, then ROC is outside the outermost finite pole (may not include z=∞). - Especially, if x[n] is casual, then ROC contains z=∞ - (2) If x[n] is left-sided and X(z) is rational, then ROC is inside the innermost nonzero pole (may not include z=0). - Especially, if x[n] is anticasual, then ROC contains z=0 - (3) If x[n] is two-sided and X(z) is rational, then ROC is a ring between two consecutive poles. 
 Properties of ZT

 ZT pairs
